

### Mission

Oak Ridge National Laboratory missioned NMSU's capstone team to improve the reliability of fused deposition modeling (FDM) by developing a predictive quality model using real-time sensing and mechanical testing.

# **Project Scope Of Work:**

- Predict print quality through in-line sensing and data acquisition
- Sensors: Accelerometers, thermocouples, and infrared (IR) cameras
- Record temperature, vibration, and thermal distribution during printing
- Fabricate mechanical test specimens using variable print parameters
- Parameters include orientation, size, and infill pattern
- All specimens printed using industry standard PLA material
- Tensile strength testing
- Analyze results and correlate sensor data with mechanical performance

## Focal Areas

## **Software:**

- Raspberry Pi is a compact, single-board computer
- Integrates essential components like a CPU, RAM, and a HDMI port onto a single circuit board
- Python has allowed us to obtain the coordinate data

#### **Extrusion Parameters:**

- Temperatures
- Speed (or Flow Rate)
- Layer Height
- Nozzle Diameter
- Infill Density
- Print Speed

# **Porosity and Anisotropy:**

• Porosity refers to inadvertent gaps within a material, while anisotropy describes direction-dependent properties such as varying strength or stiffness.

# Special Thanks

- Our clients, Madhura Limaye and Segun Isaac Talabi
- Brooke Montgomery and Luke Nogales

Aggie Innovation Machine Shop

# FDM Quality Process

Jesse Murphy (ME), Bethany Chacon (ME), Dylan Garcia(IE)

# Oak Ridge National Laboratory (ORNL)

# Final Design



#### Phase 1: Calibration & Baseline Data Collection

- Ensure the FDM printer is properly calibrated (nozzle height, bed leveling, and extrusion settings)
- Print a standard test specimen under controlled conditions without any modifications

### **Phase 2:** Controlled Printing Experiments

• Change nozzle temperatures (e.g., 200°C, 210°C, 220°C)

# Phase 3: Post-Printing Quality Analysis

- Test specimens are sent to the NMSU Machine Shop to get cut into dog bones by a waterjet
- Mechanical property testing using an Instron

#### Phase 4: Correlation Analysis

- Data collected from the sensors during printing will be analyzed alongside post-printing mechanical and surface quality results
- The graphs of the Instron will be compared to one another to find out the best parameters for the strongest outcome with PLA
  - The raspberry pi data will be analyzed to understand how temperatures affect the final prints



# **Concept Development**

## **Cube and Dog Bone**

The design of the cubes and dog bones needed purposeful geometry that would suit the tensile testing requirements we were looking to analyze.

- 9 cubes with dimensions of 140 mm x 140 mm x 140 mm
- 70 dog bones, with dimensions of 6.5 mm x 0.75 mm x 0.20 mm





# Results

| Temperature (°C) | Orientation | Tensile<br>Strength | Strain at<br>Break | Notes                       |
|------------------|-------------|---------------------|--------------------|-----------------------------|
| 220              | Horizontal  | Highest             | Highest            | Best<br>adhesion,<br>stable |
| 220              | Vertical    | 30-40%<br>lower     | Lower              | Brittle,<br>weaker          |
| 210              | Horizontal  | Moderate            | Moderate           | Slight decline from 220°C   |
| 210              | Vertical    | Lower               | Lower              | Brittle, like 220°C         |
| 200              | Horizontal  | Lowest              | Early failure      | Poor performance            |
| 200              | Vertical    | Weakest             | Weakest            | Pronounced degradation      |

- The best printing parameters for industry standard PLA using the Bambu Lab X1-Carbon is 220 °C at a horizontal orientation
- O These conditions provide the highest tensile strength and highest strain at break, along with the best adhesion and stability.

### References

- "Bambu Lab X1-Carbon Combo 3D Printer," MatterHackers. [Online]. Available: <a href="https://www.matterhackers.com/store/l/bambu-lab-x1-carbon-combo-3d-printer/sk/MG70U3XH">https://www.matterhackers.com/store/l/bambu-lab-x1-carbon-combo-3d-printer/sk/MG70U3XH</a>.
- "Bambu Lab X1 Carbon PETG Settings," The Maker Sphere. [Online]. Available: <a href="https://www.themakersphere.com/bambu-lab-x1-carbon-petg-settings/">https://www.themakersphere.com/bambu-lab-x1-carbon-petg-settings/</a>.
- A Guide to Tensile Testing for 3D Printing," Makenica. [Online]. Available: <a href="https://makenica.com/a-guide-to-tensile-testing-for-3d-printing/">https://makenica.com/a-guide-to-tensile-testing-for-3d-printing/</a>.